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Abstract

The hydrogen diffusivities D in yttrium dihydrides YH have been measured by means of pulsed-field-gradient nuclear magneticx

resonance (PFG-NMR) up to 920 K for x51.91 and up to 620 K for x51.95 and 2.03. The observed D values are generally significantly
greater than those in the dihydrides of titanium and zirconium. The activation enthalpy H , obtained by fitting an Arrhenius expression toa

the diffusivities, decreases substantially with increasing x from H 5 0.53 eV (x 5 1.91) to H 5 0.38 eV (x 5 2.03). Measurements of thea a

proton spin-lattice relaxation G have been performed on the same samples. The temperature and concentration dependences of the dipolar1

relaxation G are consistent with the PFG results. Besides G and the electronic relaxation G , the G data reveal contributions due to1d 1d 1e 1

very small concentrations of paramagnetic impurities G , which dominate the measured rates below about 500 K, even at impurity levels1p

as low as 20 ppm or less.  2002 Published by Elsevier Science B.V.
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1. Introduction present paper reports on model-independent diffusion
measurements on three YH samples in the pure dihydridex

Yttrium, which has a hexagonal close-packed (hcp) phase by pulsed-field-gradient (PFG) spin-echo NMR. The
structure at room temperature, absorbs hydrogen at ele- results will be compared with the diffusivities measured
vated temperatures to form homogeneous dihydrides YH previously in the dihydrides of zirconium [15,16], titaniumx

with an approximate range of compositions from x 5 1.80 [17] and lanthanum [18]. The proton spin-lattice relaxation
to 2.05 [1]. These dihydrides have a fluorite-type structure G has been measured as well and will be analysed together1

with a face-centered cubic (fcc) lattice of the yttrium with information available from the PFG results.
atoms. At room temperature and below hydrogen atoms
occupy only the T-sites when very pure yttrium is loaded
to the stoichiometric dihydride composition x 5 2.0 [1–5]. 2. Experimental details
For x . 2, the excess hydrogen atoms are accommodated
in O-sites. It is believed that impurities in the yttrium metal The samples were prepared in the Materials Science
block some of the available T-sites, resulting in a substan- Division of the Ames Laboratory from high-purity yttrium
tial occupancy of O-sites even for x # 2.0 and at low [12]. The hydrogen concentrations of the three YHx

temperatures [1]. In addition to that one expects hydrogen samples were determined by hot-vacuum-extraction analy-
atoms to be thermally promoted to the higher-energy sis to an accuracy of about 1% of the quoted values
O-sites, as reported in earlier publications [6–10]. x51.91, 1.95 and 2.03. For the NMR measurements the

Nuclear magnetic resonance (NMR) has been used for powdered samples were sealed in quartz tubes under a
many years to investigate hydrogen motion [2,6,11–14], pressure of about 0.1 bar of He. The samples YH and1.91

hydrogen locations [2] and the electronic structure [3– YH , which have a very small total magnetic rare-earth2.03
316,12] in the yttrium dihydride / trihydride system. The impurity content of 20 ppm (mainly Gd ), are those used

in previous NMR studies [12]. The YH sample was1.95

*Corresponding author. prepared from highest-purity yttrium available, with an
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Table 1extremely low level of paramagnetic rare-earth impurities,
Diffusion parameters of hydrogen in YH obtained by fitting Arrheniusxdetermined by spark-source mass spectroscopy, on the
expressions to the diffusivities D measured by PFG-NMR. Estimated

order of 5–10 ppm total. uncertainties are 63% in activation enthalpies H and 620% in pre-a
The PFG measurements were performed using the two- exponential factors D ; D(600 K) has been calculated from the fit0

pulse spin-echo sequence [19] and, for YH below parameters; T denotes the temperature of the dipolar relaxationmax1.91
maximum at v /2p537.7 MHz620 K, the stimulated spin-echo sequence [20] with field-

21gradient pulses up to 25 T m . To avoid thermal desorp- x D H D(600 K) T0 a max
28 2 21 212 2 21[10 m s ] [eV] [10 m s ] [K]tion of the samples [21], a temperature of about 620 K was

not exceeded in the case of YH and YH . 1.91 4.8 0.53 1.7 6651.95 2.03

1.95 0.9 0.40 3.9 610
2.03 1.0 0.38 6.4 570

3. Results and discussion

given in Table 1. The pre-exponential factors D are of theThe diffusivities of hydrogen in YH are shown in Fig. 0x

same magnitude as those found in LaH [18], for example.1. In the concentration range covered by these data (x 5 x

Increasing the hydrogen content from x51.91 to x51.951.91–2.03) the hydrogen diffusivity at a given temperature
results in a reduction in D , whereas a further increase toincreases rather strongly with increasing x. At 600 K, for 0

x52.03 seems to have no significant effect on D .instance, the diffusivity in YH , which contains only 02.03

Previous diffusion studies of hydrogen in YH by NMRabout 6% more hydrogen than YH , is greater by almost x1.91

and by QENS yielded an activation enthalpy of H 50.34a factor of four than that in YH . Quasielastic neutron a1.91

eV for x51.98 [14]. The values H 50.35 eV [22] andscattering (QNS) on YH (1.8 # x # 2.1) at 450 K also ax

H 50.30 eV [23] have been deduced from QENS datarevealed an increase in the hydrogen jump rate with a

measured on a YH sample with x51.97. Based onincreasing x [22,23]. In lanthanum, which forms non- x

relaxation rate and selective inversion NMR measurementsstoichiometric homogeneous hydrides LaH with an fccx

on two YD samples with x 5 2.04 and x 5 2.08, a value oflattice of the host metal in the concentration range x ¯ 1.9– x

H 50.55 eV has been reported for the activation enthalpy3.0, an increase in the diffusivity with increasing x has a

of deuterium T–O interchanges [2]. These data comparebeen reported for x $ 2 [18]. By contrast, in the
reasonably well with the present results.dihydrides of zirconium [15,16], titanium [17] and hafnium

The diffusivities found for YH are generally signifi-[24] the hydrogen diffusivity at a given temperature x

cantly greater than those in the TiH [17] and the ZrHdecreases with increasing hydrogen content. x x

[15,16] systems. A comparison of the present results forThe solid lines in Fig. 1 represent fits of an Arrhenius
YH with the diffusivities measured previously in thelaw 2.03

stoichiometric dihydride of lanthanum and in the nearlyD 5 D exp(2H /k T ) (1)0 a B stoichiometric dihydrides of titanium and zirconium is
to the diffusion coefficients with the fitting parameters given in Fig. 2.

Fig. 2. Comparison of the hydrogen diffusivities measured by PFG-NMR
Fig.1. Temperature dependence of the hydrogen diffusivity D in YH in nearly stoichiometric dihydrides. The solid lines correspond to H 5x a

(1.91 # x # 2.03) measured by PFG-NMR. The solid lines represent 0.38, 0.55, 0.92 and 1.10 eV for YH , LaH [18], TiH [17] and2.03 2.00 2.02

Arrhenius laws with the diffusion parameters given in Table 1. ZrH [16], respectively.1.98
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The following mechanism of hydrogen diffusion has mum at lower temperatures that results from very low
been found for the dihydrides of the group-IVa transition levels of paramagnetic impurities. The temperature of the
metals: up to x ¯ 1.9 hydrogen atoms jump predominantly diffusion-induced G maximum, T , decreases with1d max

between nearest-neighbor T-sites. In this concentration increasing x (cf. Table 1), indicating the increase in the
range the activation enthalpy, H ¯ 0.5 eV, is nearly hydrogen diffusivity. The total spin-lattice relaxation ratea

concentration independent and the diffusivity decreases may be decomposed according to
with increasing x due to blocking of occupied T-sites. But,

G 5 G 1 G 1 G . (2)1 1d 1e 1pas x approaches the limiting value of 2, the effective
activation enthalpy increases sharply to H ¯ 1 eV, indicat-a The electronic contribution G is due to the interaction1eing that in the stoichiometric limit another process plays with the magnetic moments of the conduction electrons,
the dominant role for the hydrogen diffusion [15–17]. and it is usually expressed by the Korringa relation G 51eThis behavior is very different from that in the group- T /k [25]. The dominance of the impurity-related relaxation
IIIa transition metals lanthanum and yttrium, which form

G at low temperatures prevents a reliable determination1psuperstoichiometric dihydrides with partial occupation of of G . As an approximation, the temperature dependence1eO-sites. As long as O-sites are not or almost not occupied of G has been calculated with k 5 269 Ks reported for1ein those systems, the activation enthalpies for hydrogen YH [6].1.92diffusion are also of the order of H ¯ 0.5 eV. However, thea Below about 500 K, G dominates the measured1pmore hydrogen atoms are added and, thus, the more O- relaxation rate. As pointed out by Phua and co-workers
sites are occupied, the smaller is the activation enthalpy. In [12], the appearance of a shoulder or a secondary maxi-
the lanthanum dihydride / trihydride system, H decreasesa mum on the low-temperature side of the G maximum1dfrom 0.55 eV at x52.0 to, for example, 0.44 eV at x52.26 may be readily misinterpreted in terms of a second
[17]. The present data indicate that in YH , where Hx a motional process with lower activation enthalpy. This
decreases from 0.53 eV at x51.91 to 0.38 eV at x52.03, complication in the interpretation of G data in terms of1the change in the activation enthalpy with x is even diffusion parameters underlines the great value of PFG-
stronger and occurs already at lower concentrations than in NMR in measuring the diffusivity directly.
LaH .x In order to analyse the dipolar relaxation G in terms of1dIn order to gain further insight into the mechanism of hydrogen diffusion, assumptions on the underlying diffu-
hydrogen diffusion the proton G has also been measured1 sion mechanisms are required. It is generally accepted that
on the same samples. The G data shown in Fig. 3 reveal1 in the dihydrides of the group-IVa transition metals jumps
two characteristic features: a maximum due to the dipolar between adjacent T-sites (direct T–T jumps) are, at least
relaxation G and a shoulder or even a secondary maxi-1d up to x ¯ 1.9, the dominant diffusion mechanism. These

T-sites form a simple cubic (sc) sublattice, and the
occupation probability of a T-site is given by c 5 x /2. ForT

such a diffusion process, lattice-specific Monte Carlo-
calculations, that depend slightly on c , are available forT

c 5 0.90 and c 5 0.99 and yield G values as a functionT T 1d

of the mean dwell time of hydrogen t [26]. In thed

dihydride–trihydride systems of the group-IIIa transition
metals, where O-sites are also occupied, the diffusion
mechanisms are more complex. Experimental evidence
indicates that in both YH [2] and LaH [18] hydrogenx x

diffusion is dominated by T–O exchanges for x . 2.
However, it remains an open question at what concen-
tration x (and temperature) T–O exchanges begin to occur
more frequently than direct T–T jumps in YH . At presentx

it can only be checked whether data are inconsistent with
the assumption of direct T–T jumps, since a relaxation
model that takes into account T–O exchanges is not yet
available.

As a straight forward approach to analyse the G data1dFig. 3. Spin-lattice relaxation rates G of hydrogen in YH (x51.91, 1.951 x for x 5 1.91 we considered only direct T–T jumps and
and 2.03) measured at 37.7 MHz. The solid line represents the sum of G1e used Sholl’s calculations [26] for c 5 0.99. The meanand G for YH . G has been calculated using the Korringa relaxation T1d 1.91 1e

dwell time of hydrogen has been calculated for a single[25] with k 5269 Ks, and G has been obtained from Sholl’s calculations1d

[26] for direct T–T jumps with the H value of the PFG results. The thermally activated motional process according toa

corresponding curves for YH and YH are plotted as dashed lines1.95 2.03

above 400 K. t 5 t ? exp(H /k T ) , (3)d 0 a B
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with the activation enthalpy H 50.53 eV taken from the enthalpies determined from the model-independent PFGa

PFG results. The t value of Eq. (3) has been adjusted to data.0

match the position of the G maximum, and the second Diffusion measurements of hydrogen in the trihydrides1d

moment M , which determines the relaxation strength, has of yttrium are in preparation in our group. These studies2

been calculated for pure T-site occupation. The solid curve should reveal the differences in the diffusion behavior
in Fig. 3 represents the sum of G and G calculated as between metal hydrides with fcc and hcp host structures. It1e 1d

outlined above and scaled by a numerical factor f 51.33 to is of particular interest to investigate the changes in thep

match the measured relaxation maximum. It is evident that hydrogen diffusivity at the temperature of the semicon-
the temperature dependence of the G data follow quite ductor-to-metal transition of the hcp yttrium trihydrides.1d

well the Monte Carlo-calculations [26] for direct T–T Moreover, it is still an open question whether hydrogen
jumps with the H value obtained by PFG-NMR. This diffusion in the stoichiometric limit, YH , also showsa 3

result is not too surprising for a sample with x 5 1.91, hysteresis, as has been observed in the stoichiometric
where hydrogen atoms are expected to occupy predomi- trihydride of lanthanum [18].
nantly the T-sites. The deviation of the relaxation data
from the calculated curve above about 900 K indicates the
onset of the high-temperature relaxation [27], which does Acknowledgements
not manifest itself in the diffusion data.
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